305 research outputs found

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure

    Quantity and quality of empathic responding by autistic and non-autistic adolescent girls and boys

    Get PDF
    Empathy evokes support for the person in distress, and thus strengthening social cohesion. The question is to what extent empathic reactions can be observed in autistic adolescents and autistic girls in particular, since there is evidence that they have better social skills than boys, which might hinder their recognition as autistic. We examined 193 adolescents (autistic/non-autistic boys/girls) during an in vivo task in which the experimenter hurt herself. In line with our predictions, no group or gender differences appeared related to their attention for the event; yet autistic girls and boys showed less visible emotional arousal, indicative of less affective empathy. Autistic girls and boys reacted by comforting the experimenter equally often as their non-autistic peers, but autistic boys seemed to address the problem more often than any other group; while girls (autistic and non-autistic) more often addressed the emotion of the person in need. Our findings highlight that empathic behaviour – to some extent – seems similar between autistic and non-autistic boys and girls. However, differences exist, in terms of expressed emotional arousal and gender-specific comforting styles. Autistic girls’ higher levels of emotion-focused comforting could be explained by well-developed social skills, camouflaging, or emotional investment in relationships with others

    Efficient Monte Carlo algorithm and high-precision results for percolation

    Full text link
    We present a new Monte Carlo algorithm for studying site or bond percolation on any lattice. The algorithm allows us to calculate quantities such as the cluster size distribution or spanning probability over the entire range of site or bond occupation probabilities from zero to one in a single run which takes an amount of time scaling linearly with the number of sites on the lattice. We use our algorithm to determine that the percolation transition occurs at occupation probability 0.59274621(13) for site percolation on the square lattice and to provide clear numerical confirmation of the conjectured 4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this version, plus updated figures for the position of the percolation transitio

    Staircase polygons: moments of diagonal lengths and column heights

    Full text link
    We consider staircase polygons, counted by perimeter and sums of k-th powers of their diagonal lengths, k being a positive integer. We derive limit distributions for these parameters in the limit of large perimeter and compare the results to Monte-Carlo simulations of self-avoiding polygons. We also analyse staircase polygons, counted by width and sums of powers of their column heights, and we apply our methods to related models of directed walks.Comment: 24 pages, 7 figures; to appear in proceedings of Counting Complexity: An International Workshop On Statistical Mechanics And Combinatorics, 10-15 July 2005, Queensland, Australi

    Microscopic models for fractionalized phases in strongly correlated systems

    Get PDF
    We construct explicit examples of microscopic models that stabilize a variety of fractionalized phases of strongly correlated systems in spatial dimension bigger than one, and in zero external magnetic field. These include models of charge fractionalization in boson-only systems, and various kinds of spin-charge separation in electronic systems. We determine the excitation spectrum and show the consistency with that expected from field theoretic descriptions of fractionalization. Our results are further substantiated by direct numerical calculation of the phase diagram of one of the models.Comment: 10 pages, 4 figure

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    Two-Dimensional Quantum XY Model with Ring Exchange and External Field

    Full text link
    We present the zero-temperature phase diagram of a square lattice quantum spin 1/2 XY model with four-site ring exchange in a uniform external magnetic field. Using quantum Monte Carlo techniques, we identify various quantum phase transitions between the XY-order, striped or valence bond solid, staggered Neel antiferromagnet and fully polarized ground states of the model. We find no evidence for a quantum spin liquid phase.Comment: 4 pages, 4 figure

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    Editorial: Addressing community priorities in autism research

    Get PDF
    Autism is a form of neurodiversity, currently characterized by differences compared to the neurotypical population across multiple domains including sensory processing (Proff et al., 2021), social communication style (Crompton et al., 2021), attentional processing (Murray et al., 2005), and movement and motor processing (Miller et al., 2021). Historically, autism (and thus autistic people) has been studied through a medical lens (Chapman and Carel, 2022), owing primarily to the characterization of autism as a disorder of childhood development. These conceptualizations led to dehumanizing narratives about autistic people (Botha) and have impacted on who we consider to be knowledgeable about what it is like to be autistic (Kourti). In recent years, there has been a shift toward recognition of autism as a form of neurodivergence; a naturally occurring variation in the human population that may lead to a differential profile of strengths and challenges in comparison to the non-autistic population (Den Houting, 2019). This shift has been primarily driven by the autistic self-advocacy and neurodiversity movements (Kapp et al., 2013; Walker, 2021), which have campaigned for better understanding of autistic people
    • …
    corecore